面试官:使用int类型做加减操作,是线程安全吗

createh51周前 (04-11)技术教程13

大家好,我是小黑,一个在互联网苟且偷生的农民工。

在开始讲今天的内容之前,先问一个问题,使用int类型做加减操作是不是线程安全的呢?比如 i++ ,++i,i=i+1这样的操作在并发情况下是否会有问题?

我们通过运行代码来看一下。

public class AtomicDemo {
    public static void main(String[] args) throws InterruptedException {
        Data data = new Data();
        Thread a = new Thread(() -> {
            for (int i = 0; i < 100000 i system.out.printlnthread.currentthread.getname_data.increment a thread b='new' thread -> {
            for (int i = 0; i < 100000; i++) {
                System.out.println(Thread.currentThread().getName()+"_"+data.increment());
            }
        }, "B");
        a.start();
        b.start();
        // 等待A,B线程执行完毕
        a.join();
        b.join();
        System.out.println(data.getI());
    }
}

class Data {
    private volatile int i = 0;
    public int increment() {
        i++;
        return i;
    }
    public int getI() {
        return i;
    }
}

以上代码比较简单,通过A,B两个线程同时对Data对象中的i执行++操作,各自执行100000次,最后输出,如果说i++操作时线程安全的,那么最后输出的结果应该是200000,但是我们运行代码会看到如下结果:

我们发现最后输出的并不是200000,而是199982,如果多执行几次的话,这个结果会发生变化,并且大多数情况下不会是200000。这主要是因为int类型的++操作不是原子的,i++同等于i=i+1,也就是加1这一步和对i重新赋值这一步不是同时完成的,不具备原子性,所以我们得出结论int类型的操作不是线程安全的。

在很多实际场景中都需要对一个数据进行并发操作,比如电商的秒杀活动中,对一个商品数量的扣减,那么我们想保证安全性应该怎么做呢?

首先我们可以想到的就是使用synchronized关键字对increment()这个方法加锁,这样就能保证每次只有一个线程能访问。

但是之前的文章中我们有讲到synchronized是一个重量级的悲观锁,我们的业务场景的并发可能是一段时间内的,多数情况下可能并不会有很多竞争,所以有没有更好的处理方式呢,答案就是通过AtomicInteger

AtomicInteger

AtomicInteger是java.util.concurrent.atomic包中的一个类。我们看官方文档对于这个包的描述,说它是支持单个变量上的无锁线程安全编程的工具包,好像和我们期望的一样,在不加锁的情况下达到线程安全。

我们来修改一下上面例子的代码。

class Data {
    private volatile AtomicInteger i = new AtomicInteger(0);

    public int increment() {
        return i.incrementAndGet();
    }

    public int getI() {
        return i.get();
    }
}

很简单,将原来的int修改为AtomicInteger,在执行increment()方法进行增加操作时,调用incrementAndGet()方法就可以了。同样我们运行代码,会发现,不管运行多少次,代码最后执行的结果都是一样的,200000。所以我们说AtomicInteger是线程安全的。除了incrementAndGet()方法以外,还有很多其他的操作,比如decrementAndGet(),getAndIncrement(),getAndDecrement(),getAndAdd(int delta),addAndGet(int delta)等等,实际上就是对i++,++i,i=i+n,i+=n这些操作的原子实现。

除了AtomicInteger以外,java.util.concurrent.atomic包中还有一些其他类型,比如AtomicBoolean,AtomicLong等。

实现原理

那么AtomicInteger是如何实现在不使用synchronized的情况下保证原子性的呢?我们来看一下源码。

public class AtomicInteger extends Number implements java.io.Serializable {
 
    private static final Unsafe unsafe = Unsafe.getUnsafe();
    // value在内存中的地址偏移值
    private static final long valueOffset;
    static {
        try {
            valueOffset = unsafe.objectFieldOffset
                (AtomicInteger.class.getDeclaredField("value"));
        } catch (Exception ex) { throw new Error(ex); }
    }
    // value为volatile的保证内存可见性
    private volatile int value;

    public final int incrementAndGet() {
        return unsafe.getAndAddInt(this, valueOffset, 1) + 1;
    }
   
}
public final class Unsafe {
    public final int getAndAddInt(Object var1, long var2, int var4) {
        int var5;
        do {
            // 获取volatile的Int,保证拿到的值是最新的
            var5 = this.getIntVolatile(var1, var2);
            // compareAndSwapInt 比较并交换 native方法
        } while(!this.compareAndSwapInt(var1, var2, var5, var5 + var4));
        return var5;
    }
}

通过源码我们看到在incrementAndGet()方法中调用了Unsafe类的getAndAddInt方法,在这个方法内部对value进行compareAndSwapInt操作。通过这个方法名我们就可以看出是比较并交换,也就是我们之前提到过的CAS。也就是在执行赋值操作时,先看一下当前值是不是我加之前的值,如果不是,那我就重新加一次之后再进行比较,是一个循环的过程,这个过程也称作自旋

CAS这种处理方式虽然很高效地解决了原子操作,但是它仍然存在三个问题,在实际开发中一定要注意,结合自己的实际业务场景使用。

ABA问题

什么是ABA问题呢,通俗理解,就是你大爷还是你大爷,你大妈已经不是你大妈了~

什么意思呢?就是当线程1取到A之后,有另一个线程2把A变成了B,又变成了A,当线程1再修改完值进行CAS比较时,发现值还是A,和自己取到的一样,就直接更新了,但是在这个过程中,这个A中间是发生过变化的。就好比一个小偷,偷了别人家钱然后再还回来,还是原来的钱吗?虽然你的钱没变,但是这个小偷已经触犯了法律,而你自己还不知道。

为了解决这个问题,atomic包中提供了一个类,我们看下是如何解决的。

public static void main(String[] args) throws InterruptedException {
    AtomicStampedReference ref = new AtomicStampedReference<>("A", 0);
    new Thread(() -> {
        try {
            int stamp = ref.getStamp();
            String reference = ref.getReference();
            System.out.println("线程1拿到的值:" + reference + " stamp:" + stamp);
            // sleep 2秒模拟线程切换到2
            TimeUnit.SECONDS.sleep(2);
            boolean success = ref.compareAndSet(reference, "C", stamp, stamp + 1);
            System.out.println(Thread.currentThread().getName() + " " + success);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }, "线程1").start();

    new Thread(() -> {
        // 先改为B
        int stamp = ref.getStamp();
        String reference = ref.getReference();
        System.out.println("线程2拿到的值:" + reference + " stamp:" + stamp);
        ref.compareAndSet(reference, "B", stamp, stamp + 1);
        // 再改回A
        stamp = ref.getStamp();
        reference = ref.getReference();
        System.out.println("线程2拿到的值:" + reference + " stamp:" + stamp);
        ref.compareAndSet(reference, "A", ref.getStamp(), stamp + 1);
    }, "线程2").start();
}

我们可以看到AtomicStampedReference的compareAndSet()方法有4个参数:

  1. expectedReference:表示期望的引用值
  2. newReference:表示要修改后的新引用值
  3. expectedStamp:表示期望的戳(版本号)
  4. newStamp:表示修改后新的戳(版本号)

什么意思呢?就是在修改时不光比较值是不是和获取到的一样,还要比较版本号。这样的话,每次操作时都对版本号加1,那么就算值从A改为B再改回A,但是版本号从0改成了1又改成了2,并没有变回0,就可以避免ABA问题的发生。

循环时间变长

在并发非常大的情况下,使用CAS可能会存在一些线程一直循环修改不成功,导致循环时间变长,会给CPU带来很大的执行开销。并且由于AtomicReference中的引用是volatile的,为了保证内存可见性,需要保证缓存一致性,通过总线传输数据,当有大量的CAS循环时,会产生总线风暴

只能保证一个变量的原子操作

CAS的第三个问题就是AtomicReference中只能存放一个变量,如果需要保证多个变量操作的原子性,是做不到的。对于这种情况只能使用synchronized或者juc包中的Lock工具。

小结

简单做个小结,使用int类型在并发场景下存在线程安全问题,可以用AtomicInteger来保证原子性操作,Atomic是通过CAS做到无锁线程安全的。但是CAS有三个问题,第一ABA问题,可以通过AtomicStampedReference解决;第二竞争激烈情况下循环时间会变长,会产生总线风暴;第三只能保证一个变量的原子操作。

具体业务场景中是使用synchronized,Lock等锁工具还是使用Atomic的CAS无锁操作,还是要结合场景考虑。


好的,今天的内容就到这里,我们下期见。

相关文章

轻松掌握Java多线程 - 第四章:线程安全问题

学习目标1. 什么是线程安全1.1 线程安全的定义1.2 线程安全的重要性2. 共享资源访问的竞态条件2.1 什么是竞态条件2.2 竞态条件示例2.3 竞态条件的类型3. 线程安全问题的表现形式3.1...

如何在Java中实现线程安全?总结如下

在Java中,线程安全是指在多线程环境下,多个线程可以安全地访问共享资源或数据,而不会出现不一致或意外的结果。以下是一些实现线程安全的常用方法:1、使用synchronized关键字: 通过在方法或代...

Java多线程与锁机制详解:打造高效安全的并发世界

Java多线程与锁机制详解:打造高效安全的并发世界在当今这个数据处理量爆炸的时代,单线程程序已经难以满足高性能需求。Java作为一门优秀的编程语言,提供了强大的多线程支持,而锁机制正是保证多线程安全的...

Java集合框架的线程安全性:多线程编程的守护者

Java集合框架的线程安全性:多线程编程的守护者在Java的世界里,集合框架是所有开发者都绕不开的重要组成部分。无论是处理数据的存储还是操作,集合类几乎无处不在。然而,当我们把目光投向多线程编程的时候...

揭秘Java局部变量线程安全的真相:为什么它天生免疫并发问题

··在Java并发编程中,线程安全是一个永恒的话题。你是否曾疑惑:为什么局部变量不需要加锁就能避免并发问题?本文将深入剖析其底层原理,结合实战案例,带你彻底理解这一设计精髓。(点击收藏,解锁高薪面试必...

Java线程安全

当多个线程处理相同的数据,数据值发生变化时,会得到不一致的结果,这种情况不是线程安全的。 当一个线程已经在一个对象上工作并阻止另一个线程在同一个对象上工作时,这个过程称为线程安全。线程安全体现原子性:...